ﬁl.u..w_. m T » m
B-ii o & O ik
SES Ay L |
- (e
$ 00, GO
s Dcmr AV
I 559 4 /s/\%\o/(%\
g 305100 9\?@?\%% \ i
= Do AR
Qe=" \@/r\' RYL, &
S SVAVAVA /A
= VAV, Y
YOG e
@ LY/
9L6 96LV-GV VAV,

T

When U.S. Government drawings, specifications
or other data are used for any purpose other
than a definitely related government procure-
ment operation, the government thereby incurs
no responsibility nor any obligation whatsoever;
and the fact that the government may have for-
mulated, furnished, or in any way supplied the
said drawings, specifications, or other data is
not to be regarded by implication or otherwise
as in any manner licensing the holder or any
other person or conveying any rights or permis-
sion to manufacture, use, or sell any patenied
invention that may in any way be related
thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

iy M Lft

GARY M. SHEINFELD

Chief

Software Acquisition Management Division
Systems Engineering

FOR THE COMMANDER

AN 277 8l

ROBERT M. STANTON

Director

Systems Engineering

Deputy for Product Assurance
and Acquisition Logistics

bt o o IR LE SR 2 J -,

18 BN K BN S A R R 2 .=

1= 222 O R =2 =l

-
e

&

=i

WQASSIFIED A4 9% /6 1

REPORT DOCUMENTATION PAGE

L T ey, —
1a. REPORT SECURITY CLASSIFICATION 1. RESTRICTIVE MARKINGS
Unclassified

T T T T T I T
2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY QF REPORT
Approved for public release;

wm

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unlimited.

pu— R ———— Y S

4. PERFORMING ORGANIZA 1IN REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
1'88~1

ESD~TR-88-001

6a. NAME OF PERFCRMING ORGANIZATION 6b. OFFIC-E SYMBOL 78. NAME OF MONITORING ORGANIZATION
(If applicable)
The MITRE Corporation
6¢c. ADDRESS (City, State, ang ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Burlington Road
Bedford, MA 01730
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION “NUMBER
ORGANIZATION (If applicable)
Deputy Commander (continued) ESD/PLE F19628-86-C-0001
8c. ADDRESS (City, State, and 2/P Code) 10. SOURCE OF FUNDING NUMBERS
Electronic Systems Division, AFSC PROGRAM PROJECT TASK WORK UNIT
Hanscom AFB, MA 01731-5000 ELEMENT NO. NO. NO. ACCESSION NO.
565B
11. TITLE (include Security Classification)
Software Management Metrics
12. PERSONAL AUTHOR(S)
Schultz, Herman P,
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) ['S. PAGE COUNT
Final FROM TO 1988 May 60
e ——— ——
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 4 18. SUBJECT TERMS (Continue on reverse if recessary and identify by block number)
[~ Fieo GROUP SUB-GROUP] Management Indicatocrs,
) Metrics / Py
Process Metrics s —-~=--% (continued) -~

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The metrics presented in this document are used to monitor the progress of a software
development effort. They provide visibility into developing trends and thereby can be used
to forecast potential problems. These metrics are based on Government and industry ex-
periences with a previous set of mecrics known as "Software Reporting Metrics" and on an
evaluation and analysis of their use. The term "reporting” has been changed to "management"
to more precisely describe the metrics' application. ' This new report includes: a total of
10 metrics instead of 8; 4 new metrics (design progress, destgn complexity, schedule
progress, and requirements volatility); reporting and analysis recommendations; structured
descriptions for each metric that include tailoring, interpretation, and behavior
discussions; sample Data Item Description (DID) backup sheets for requiring metricg; notes on
applications to Adaf; and charting and presentation recommendations. ke wmds, B

*Ada is a registeref trademark of the U.S. Government (Ada Joint Program’Office).

20, DISTRIBUTION / AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
CIUNCLASSIFIEDAUNLIMITED SAME AS RPT. [DTIC USERS Unclassified
228, NAME OF RESPONSIBLE INDIVIDUAL — 720, TELEPHONE (include Area Code) | 22¢. OFFICE SYMBOL
Pamela J. Cunha (617) 271-2844 Mail Stop D135
DD FORM 1473, 8a MAR 83 APR edition may be used until exhausted.

SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete. MASS|F|ED

R IR SR AR s
A W) RS- et o Sl Grwem v T T BT T R WEE R AT T TR e R TR T R

; ,A ;

UNCLASSIFIED

N

. Ba. for Product Ass irance and Acquisition Logistics

k]_ﬁ_._,_) Project Management

Reporting Metrics,

Software Acquisition ,

Software Metrics g ' -
: Status Monitoring, g&fﬁws PMAMGKAT o LT g
| ¢ (
5 P T) 7 iy

L 6\1,%&04r'b«,4:f o BTN
. - - deT

v Tl

/
e R B2 SN wmE B @

o
v
¢
N
o
8

=

-

[

B

g |

7 b
i @
ﬁ

2

UNCLASSIFIED

B
=3
7

e

e
.-
-

ACKNOWLEDGMENTS

This report was prepared by The MITRE
Corporation. The work was sponsored by
the Systems Engineering Division (PLE),
Deputy for Product Assurance and Acquisi-
tion Logistics of the Electronic Systems
Division (ESD) of the Air Force Systems
Command, United States Air Force, Hans-
com AFB, Bedford, MA 01731. Funding
for this report was provided by Project
5650, Contract No. F19628-86-C-0001,
ESD/MITRE Software Center Acquisition
Support. This project is the ESD-initiated
effort to improve the acquisition of Mission-
Critical Computer Resources (MCCR). The
goals of the project are to provide guidance,
tools, systems, and techniques to Program
Offices; interact with Air Force and DOD
organizations that establish policies, regula-

tions, and standards for software acquisi-
tions; and direct associated technology

efforts.

This report was developed through the coop-
erative efforts of the ESD/MITRE Software
Center staff with supporting commentary
from staff throughout The MITRE Corpora-
tion and ESD. Some of the data has been
obtained from Dr. Barry Boehm’s Software
Engineering Economics [1] and from T. J.
McCabe’s Structured Testing and A Com-
plexity Measure [2, 4]. This document has
also been revised for compatibility with the
new Defense System Software Dzvelopment
Standard, DOD-STD-2167A. The original
set of metrics that were the basis for this
report were authored by T. E Saunders of

MITRE.

Acaession For

NTIS GRA&I
DTIC TAB
Unaonounced

Justifioation__ |

DDQ\

Avallability Codes

Dist Special

-

By.—_
Distribution/

JAvail and/or

e
e, Tt
-

TABLE OF CONTENTS

Section
1 Introduction
2 Metics Coverage, Reporting, and Analysis

3

The Metrics

Software Size Metric

Software Personnel Metric

Software Volatility Metric

Computer Resource Utilization Metric
Design Complexity Metric

Schedule Progress Metric

Design Progress Metric

CSU Development Progress Metric
Testing Progress Metric

Incremental Release Content Metric

List of References

Bibliography

Appendix A General Software Acquisition Information

Appendix B Sample DID Backup Sheet

Appendix C Enhanced DID Backup Sheet

Appendix D Glossary

Appendix E Design Complexity Definitions

Puge

8

12
14
16
18
20
22
24
26
29
32

35
36
37
39
43
47

b))

LIST OF ILLUSTRATIONS

15a
15b
16

Metrics Coverage

Metrics Correlation Matrix

Unit Development Progress and Software Personnel
CSU Development Progress

CSU Development Extrapolation

CSU Development Completion

Code and Test Progress

Test Extrapolation

Test Progress with Replan and Actuals
Number of Integration Tests

Software Size

Software Personnel

Software Volatility/Software Requiremenis Changes
Software Volatility/SAls

Computer Resource Utilization

Design Complexity

Schedule Progress

Design Progress

CSU Develonment Progress

Testing Progress/Test Status

Testing Pregress/Software Problem Reports
Incremental Release Content

vi

N R M Y P Y

Page

O 00 00~ NN L W

W W W N NN = — = -
W == O W W = O N~ W\

7= 1 R <3

‘B B 2 &

gy e B

S By &R &

L e

I -

o

2 1

|

SECTION 1

introduction

The Software Management Metrics presented
in this document provide a top-level manage-
ment overview of software development
status. These metrics are based on Govern-
ment and industry experiences with a pre-
vious set of metrics known as “Software
Reporting Metrics™ and on an evaluation

and analysis of their use. The metrics can
provide carly indications of potential soft-
ware development problems, and can call
attention to and stimulate discussion leading
to early resolution of those problems. There
are 10 metrics — 5 that measure software
development progress, and S that affect soft-
ware development progress. The metrics are
reported by the contractor at each Program
Mauagement Review (PMR).

The successful use of the metrics depends
on the program manager’s enforcement of a
serious technical review of the data collected
for each metric. The metrics graphs are a
tool for escalating the discussion of impor-
tant progress and status indicators to both
Government and contractor senior managers.

The metrics graphs show developing trends
that may indicate future problems and, when
analyzed as a set, can highlight inconsisten-

cies that might otherwise be overiooked.
Through senior management reviews and
related communications, the significance of
the identified trends can be determined and
appropriate action taken.

Approximately three years of experience in
the use and analysis of metrics has resulted
in this report, which includes aciual exam-
ples as well as comments on the behavior
and interpretation of each metric.

This document describes the Software Man-
agement Metrics and provides information
relating experience on previous softwarc
acquisitions. Section 2 discusses metrics
coverage, reporting, and analysis. Section 3
describes the Software Management Metrics;
each description includes a statement of pur-
pose, typical behavior pattemns, data inputs,
tailoring ideas, example plots, and inwerpreta-
tion notes. Appendices A through E provide
general information regarding software devel-
opment, sample Data Item Description (LID)
backup sheets for collecting metrics, data
definitions, and design complexity defini-
tions. This document reflects the new DOD-
STD-2167A and its associated DIDs.

NMERVTFRENMETFRTEFNIETY BT I TV RV TTFETTY I TE UMW ILIEY UTFEFU WS WP 1TEV TS VAR S A VA S TRE s sy TS |es

SECTION 2
Metrics Coverage, Reporting, and Analysis

The Software Management Metrics described Coverage
in this document are intended to assure that The metrics cover all phases of software
(1) there are metrics to cover all phases of development. Figure 1 relates the life of
software development; (2) the metrics are each metric to development milestones. As
5 delivered in a manner that assures manage- can be seen, all development phases are
? ment visibility into important issues; and covered more than once. This multiple cov-
| (3), and most importantly, the metrics erage provides not only better visibility into
- reported are effectively analyzed to identify each development phase, but also an oppor-
E potential software development problems. tunity to venfy the correctness of reported
i This section describes the metrics’ coverage data through consistency checks. The metrics
4 and provides recommendations regarding address two aspects of development: prog-
| a their reporting and analysis. ress and planning. The five progress metrics
SO A T T AT
i PSERSONNAREE S N \‘\\\\\\}\ “ S
i SOFTWARE m&; | ;
g VOLATILITY : Z
COMPUTER | 5 5 a
RESOURCE AR
s UTILIZATION -
coMP e T
-~
y N
g SCHEDULE }e
. PROGRESS fif
g DESIGN PROGRESS | - [e
(o] | : 2
_ DEVELOPMENT . TN > 2
ﬁ PROGRESS | | . - . T B
wsmwe | 0 A T N N
A RELEASE I I T A T SURTRRTR ot
CONTENT| ¢ ¢ ¢t ¢+ ¢+~ . - & ~~ & : T J
? SRR SDR SR PDR QR TRR PCA
a Figure 1. Metrics Coverage
E 3 KX

I S T L TN M A A P U U O IR r U U ST W WY W LY T LAY N L LT) AL R R e B R P AL AT REFIE VIR VIE VR VRN

CHANGES IN

clearly indicate deviations between the
planned and actual status of software devel-
opment. The five planning metrics strongly
influence softwarc development progress.

Reporting

The metrics should be presented at each
PMR where they can provide management
with visibility into potential cost and sched-
ule impact problems. In order to focus the
PMR discussions, a pre-PMR metrics screen-
ing is recommended that should be accom-
plished in two steps:

a. The contractor delivers the metrics to the
Government at least |1 week prior to the
PMR. At that time, they are discussed in
a Technical Interchange Meeting (TIM)
or by telephone conference between the

Government’s and contractor's technical
staff to identify potential problem areas
for discussion at the PMR.

b. The results of this TIM are discussed
within the System Program Office (SPO)
at a meeting with the SPO director. The
purpose of this meeting is to separate
issues to be discussed at the PMR from
those to be discusced at TIMs. The rec-
ommendations are conveyed to the con-
tractor, who then tailors his PMR
presentation accordingly and schedules
any necessary TIMs.

Analysis

The inetrics provide a mechanism for evalu-
ating the credibility of project plans and for
identifying trends — not only in deviations

IMPACT
METRIC | stoc | Pers | RRQT | sais | ceu | 2200 1 oCH2 | DSOR | DE% | s | strs | IRC
sLoC X X X X X | x X
PERS X X X X
W | x X X X X X X X
SAIs X X X X s
CRU X X
o X x | x| x| x| x| x
SCHD
PROG
gﬁgg X s s
&%‘g X s
T x s
SPRs X X X X
IRC X

§ = SCHEDULE IMPACT

Figure 2. Metrics Correlation Matrix

LYRE RN QW T EE "R o,

B3

Ly, X2

>
"

S AMXE OBy MR B S

(3% B B=

between planned and actual values, but also
in projections that can be made from actual
values. Therefore, program managers, in
addition to their staffs, must understand if
not actively participate in the metrics’ analy-
sis in order to draw conclusions that will
influence management decisions. Two analy-
sis techniques that have proven to be effec-
tive are correlation and extrapolation.

Correlation

It has been shown in figure 1 that during
any phase of development, several metrics
are being reported. There is also a strong
relationship between the reported metrics:
that is, changes in one metric should cause
changes in others. The matrix in figure 2 |
indicates the more common relationships.
Changes in the metrics listed on the left
should have an impact on those whose
columns are marked with an X. The analyst
should look for inconsistencies within the
related group of metrics. For example, if
the Development Progress metric shows that

NTRUW AN VLT YT T TT Y DT vyrTe s Ty v

actual development is behind schedule and
the Personnel metric shows a reduction in
planned staffing, then these metrics are not
consistent and should be discussed with the
contractor. Figure 3 is an example of just
such an occurrence on an actual project. In
this case, the contractor acknowledged the
discrepancy and revised the staffing plan the
following mcnth. The correlations shown in
the matrix are not meant to be all-inclusive.
Specific projects may have other important
relationships.

Extrapolation

One means of analvsis that can provide an
early indication of potential problems is
extrapolation. Trends in actual data can be
projected to evaluate their pctential impact
on schedules. This applies to progress data
for development items such as Computer
Software Unit (CSU) design, code and test,
and integration, as well as to guantitative
trends in software size, emrors, and require-
ments changes.

R A S A A A A BIA A B Aol Aol % §.7 ¢

100 . . 50
amm TOTAL CSUs
....... ' PLANNED
PERSONNEL
80 \\\-\\\\f\\\\\\\\\\\\\\:\\\\\\\E\\\\\\;\\\\SS»:‘-;;;“S‘\ \\\ wmst CSUs TESTED -1 40
\\ swe ORIGINAL
\ TEST PLAN
: \\ L e REVISED TEST
60 N \\\\\\\\\PL.AN 3 ~130
N
40 E
20 | bbbl
................... ; z —— s
: i MR
0 mnnlull'nmmnlﬂ“""'“"':'"""""mswm?mm ‘ , s
30 33 36 39 42 45
PROGRAM MONTHS

Figure 3. Unit Development Progress and Software Personnel

i LB e WR EA SR WM SU.UR SB SR SR MARARRSRMANRRRMANASANAMARASNSARARARNENAArRANANARNArN AN\ ANKN RN

To show how useful and accurate extrapola-
tion can be, two examples are presented
from actual project graphs. These were
selected because they contain enough data to
show a trend, and in both cases the trend is
distinctly different from the plan. Figure 4a
‘ is a graph taken from a PMR. Notice that
actual progress lags behind the plan. Figure
4b shows an extrapolation based on actual
progress to date. This extrapolation predicted
the development to be completed around
week 55, about 20 weeks behind schedule.
In figure 4c¢, the actual data for the balance

of the development was obtained and plotted.

The last CSU was actually developed during

Another example is shown in figures 5a
through c. In this example, 4 months elapsed
between figures 5b and Sc. The extrapolation
was performed with only the data shown in
Sa. Actual data for the intervening 4 months
was then obtained and, as can be seen, it
closely follows the extrapolated schedule.
Data for the following 4 months later became
available and was added to the graph. Notice
how the actual data continues to follow the
extrapolated schedule in spite of a replan at
month 42.

Figure 6 again illustrates the unvarying
nature of an established trend. It shows that
an extrapolation made as early as April or

week 58§. \
eck 53 May would have been quite accurate.
300
2m ¢
2
jon’ IS S LSOO SOOI SO i
150 H §
g
b lw Q&\W
§
......... y
- ; QR SO i eenbo.. Wmm PLANNED
50 i @ : H :
e . swe ACTUAL
0 s 10 1520 25 30 35 40 45 S50 55 60

WEEKS

Figure 4a. CSU Development Progress

ok

»

2 BT N - B I

AK BB & 2

1Y B B OSS o8 @ 5

CSUs

CSUs

150

100

150

100

Wm PLANNED
wese ACTUAL
wa EXTRAPOLATION

H

1015 20 25 30
WEEKS

Figure 4b. CSU Development Extrapolation

35

40

45 50 55

ey v

wim EXTRAPOLATION

== PLANNED

e ACTUAL

[USSNAN

SXUIEN

10 15 20 25 30
WEEKS

Figure 4c. CSU Development Cc.mpletion

7

35

40

45 50 55

60

P -y wire e TIPS FLIE . FU P

140
120
100
" 80
jon
g
60
" @R TOTAL CSUs
40 ANSNN CODED
.......... wae TESTED
20§ e UNIT TEST PLAN
0 A\
20 26 50
PROGRAM MONTH
Figure 5a. Code and Test Progress
140
120 o3easas
100
80
<]
4]
60 |- o
=== TOTAL CSUs o
R CODED “’”'mllllll.
\\\‘b “I”
40 b s TESTED \\\\\\\\.\ "lm.lllmll
N 1l
........... wess [UNIT TEST PLAN \\\\\\\\ ?""""'jiﬂ”ml"'m'”
20 b wm EXTRAPOLATION \\\\\\Q !""l"“
S
S "
20 26 32 38 4 50
PROGRAM MONTH

Figure 5b. Test Extrapolation
8

5

B 08 B B OB 585 O =X gt

=a &

s = =

S ==

SRR TNy WS P E T I R S wee

CSUs

PERCENT

140

120

100

80

40

20

100

80

20

W S

......... mmm TOTAL CSUs
......... a~ CODED .J
"
| wses TESTED o e
seme UNIT TEST PLAN
wwn REVISED UNIT
.......... TEST PLAN
........ mm EXTRAPOLATION
\.\\\\\;\\\\\\\
NNA
S
20 26 32 50
PROGRAM MONTH
Figure 5c. Test Progress with Replan and Actuals
PLANNED
ACTUAL ...
S
J F M A M J J A S o N D

MONTH
Figure 6. Number of Integration Tests

9

PRSI

LA g
- oo
"a

"

b
Iy

l'i
o

L e

TwY T

SECTIONS3

The Metrics

The Software Management Metrics are
described in this section. Each metric
description includes a statement of purpose,
typical behavior patterns, data inputs, tailor-
ing ideas, plotting examples, and interpreta-
tion notes. The latter three require some
explanation, which is provided in the follow-
ing paragraphs.

Tailor'ag

Most of the metrics will apply to all pro-
grams. However, there are cases when

an individual metric could be deleted or
replaced to meet specific needs. Such tailor-
ing also applies to the individual data items
collected for each metric. Factors to con-
sider when tailoring include the nature of
the software acquisition, high-risk areas, the
software metrics currently used by the con-
tractor, the use of more than one program-
ming language, the type of testing, and the
number of Computer Software Configuration
Items (CSClIs). Tailoring suggestions are
included with each metric. The resuit-

ing set of data input requirements for each
metric is then contractually specified in

a DID referenced by the Contract Data
Requiremients List (CDRL). Exampies of
DID backup sheets for a basic set and for

a tailored set of metrics are given in appen-
dices B and C, respectively. The reader

is cautioned that the tailored set is merely
an example, and that each acquisition

must be analyzed to determine which, if
any, changes are needed and appropriate.
Definitions of certain data items are provided
in appendix D.

Ada and Object-Oriented Design

The use of Ada and the use of an object-
oriented design methodology affect the col-
lection of certain metrics data. Ada and
object-oriented desi;n may be used sepa-
rately or in conjunction; therefore, the impli-

1

cations of each are noted with those metrics
that would require modification.

Plotting Examples

An example plot is included for each metric.
The plot format is important and should
conform to certain guidelines. Each plot
should present at least the past 12 months

of planned and actual data and the next 5
months of plan data. Review milestones are
indicated on the abscissa. Plan data is the
original plan submitted to the Government.
Revised plans may be added and so labeled,
but previous plars may not be removed
because important trend data would be lost.
The current month is identified by a bold
vertical line on the chart. The metrics are
normally reported at PMRs and therefore
have the same reporting period. The example
plots are based on a software development
initially estimated to require 120,000 Source
Lines of Code (SLOC) and 1200 staff
months over a 36-month schedule. The proj-
ect milestones are Systern Requirements
Review (SRR) at month 2, System Design
Review (SDR) at month 5, Software Specifi-
cation Review (SSR) at month 8, Preliminary
Design Review (PDR) at month 12, Critical
Design Review (CDR) at month 17, Test
Readiness Review (TRR) at month 27, and
Physical Configuration Audit (PCA) at
month 36.

Interpretation Notes

The interpretation notes contain specific
guidelines derived from experience and

from analyses of actual projects. They are
intended to be viewed as helpful inform.ation,
not as inflexible principles. Again, the met-
rics must be carefully analyzed by staff and
by senior managers if they are to have an
impact on management decisions and on
subsequent software development costs and
schedules.

Software Size Metric

Purpose

The Software Size metric tracks changes in
the magaitude of the software development
effort. SLOC to be developed directly relates
to the software engineering effort necessary
to build the system. SLOC is aiso the pri-
mary input parameter to almost all software
cost estimation models used in Mission Criti-
cal Computer Resource (MCCR) applica-
tions. An increase in SLOC estimates can
lead to schedule slips and staffing problems.
An increasing trend should trigger steps to .
counter the trend or to plan for a larger
effort. SLOC count is initially an estimate,
but as the design matures and code is devel-
oped, the count becomes more and more
accurate until it represents the actual code at
completion.

SLOC is usually tracked for each CSCI as
well as for the total system. To be complete,
SLOC counts for all commercial off-the-
shelf (COTS) and modified off-the-shelf
(MOTS) software should also be included.

Behavior

Some programs show increases in estimates
of SLOC over time while others show
decreases. Increases may be due to a better
understanding of the requirements, a better
understanding of the design implications and
complexities, or an optimistic original esti-
mate, whereas decreases usually result from
an overestimate at the beginning of the pro-
gram and not from changes in requirements.
Both may be due to an original lack of
understanding and appreciation of the
requirements.

Data Inputs
Each reporting period:

a. Estimated new SLOC -~ newly developed
code.

12

b. Estimated reused SLOC — existing ccde
used as is.

c. Estimated modified SLOC — existing
code requiring change.

d. Estimated total SLOC — all code (sum
of above).

A definition of SLOC that both the contrac-
tor and the SPO understand and accept
should be used. A recommended example
taken largely from reference 1 is:

SLOC includes each source statement created
by project personnel and processed into
machine code. It excludes comments and
unmodified utility software. It includes job
control language, format statements, and
data declarations. It also includes newly
developed support software.

A tighter definition could be developed
depending on the source code language.

(Note: An accepted measure of SLOC in
Ada is to count all nonlitesal semicolons (;)
in each package. SLOC counts in Ada may
be higher than with other languages due to
the specificity and completeness of the
language.)

Tailoring Ideas

a. Delete SLOC types not applicable, i.e.,
new, reused, or modified.

b. Require separate data reporting for each
coding language used.

c. Require separate reporting for each pro-
cessor and/or CSCI.

d. Report object code size.

Example Plot

Figure 7 illustrates several changes in coding
effort that would not be shown if only total

e By g e fa Rl ko g 8o AT, -) RV, HF) RV §ia $-. V. 875 FFe T CINL

2= =

=B B B8 B B8 % g

=3 s e

B B £ =5 258 8

Al

160

TR

s TOTAL SLOC

«#+. NEW SLOC

E]
120 '._J g‘L%%‘HED
smm REUSED SLOC

///'/I/I// “1

SRR SDR

Figure 7.

SLOC were reported. A month before SSR

it is determined that some modified SLOC
cannot be used and that new SLOC will
have to be developed. This results in an
increased effort, but if only total SLOC were
reported, the increased effort would not show
on the graph. It is next determined that some
reused SLOC cannot be used and that new
SLOC will have to be developed. Again,
this change requires additional effort, but if
only total SLOC is reported, it again would
go unnoticed. A month prior to PDR, the
example shows an increase in new SLOC
resulting from a better understanding of
requirements. This is the only change
reflected in the total SLOC count.

Interpretation Notes

a. Software size should not vary from the
previous reporting period by more than
5 percent without a detailed explanation
from the contractor and related discus-
sions regarding cost and schedule
improvements.

SSR PDR . CDR

Software Size

b. Changes in SLOC estimates often result
from a better understanding of require-
ments, which is desirable. However,
increases in size must be accounted for
in the contractor’s schedule and staffing
plans.

c. Total SLOC does not linearly relate to
effort because modified and reused code
require increasingly less effort to develop
than new code. If SI.OC to be modified
are identified and ccunted at the CSU
level (including SLOC that must be
understood in order to modify other
lines), then the modified code develop-
ment effort will closely equal that for
newly developed code. Similarly, reused
cade may also require coding effort to be
integrated into a new system. Therefore,
if the lines of reused code requiring modi-
fication are included in the counts of
modified code, then the sum of modified
and new code will approximate the total
software development effort.

Software Personnel Metric

Purpose

The Software Personnel metric tracks the
ability of the contractor to maintain planned
staffing levels and to maiatain sufficient
staffing for timely completion of the pro-
gram. The software staff includes the engi-
necring and management personnel directly
involved with the software system planning,
requirements definition, design, coding,
test, documentation, configuration manage-
ment, and quality assurance. Counts of
unplanned personnel losses are maintained
so that work force stability can be tracked.
Experienced staff are crucial to timely soft-
ware development. Experienced personnel
are nominally defined as those individuals
with a minimum of 5 years’ experience in
MCCR software development and a mini-
mum of 3 years’ experience in software
development for applications similar to the
system under development.

Behavior

The planned staffing profiles for total soft-
ware staff and for experienced software staff
sheuld be plotted at the beginning of the
contiact. A normal program may have some
deviations from the plan, but the deviations
should not be severe. However, a program
with too few expetienced software personnel,
or one that attempts to bring many personnel
onbeard during the latter stages of the proj-
ect’s schedule, will most likely experience
difficulty. The normal shape of the total
software staff profile is to grow through the
design phases, peak through the coding and
testing phases, and then gradually taper off
as integration tests are successfully com-
pleted. The shape of the experienced staff
profile should be high during the initial stage
of the project, dip slightly during CSU
development, and then grow somewhat dur-
ing testing. The ratio of total io experienced
personnel should typically be near 3:1 and
should never exceed 6:1.

14

Data inputs
Initial:

a. Planned total personnel level for each
month of the contract.

b. Planned experienced personnel level for
each month of the contract.

c. Expected attrition rate.
Each reporting period:

a. Total persornel.

b. Experienced personnel.

¢. Unplanned personnel losses.

Tailoring Ideas

a. Report staffing separately for each devel-
opment task, e.g., validation and veri-
fication (V&V), support software,
applications software, testing, and
software quality assurance (SQA).

b. Report staffing separtely for special
development skills needed, e.g., Ada,
database management system (DBMS),
operating system, and artificial intelli-
gence (Al).

c. Report staffing separately for each devel-
opment organization.

Example Plot

Figure 8 shows that prior to CDR the actual
number of personnel wac lagging behind the
plan, but that the number of experienced
personnel was higher than planned. This
may indicate that the contractor was initially
having staffing problems and was trying to
compensate by using additional experienced
staff. Current levels rnay be appropriate if
development schedules are maintained,

but the SPO should monitor this closely.
Unplanned losses show a nominal trend and
do not indicate any internal problems. A

ZRIN T N PUIETAE PRGN DV A RN L A RV RV AN R R R VAL,

B K¢t

R EE B £ = =

25

-
»

(8 2 B 8 & A

o5

= I

l I 5 = 5 - - - —— -

AT E—R W ————— .

800
e TOTAL
” i
g EXPERIENCED
9: 200 [!
é ‘
LAréNED OSSES
0 ‘1 p—————— #_
-20 p—~ .
40

PDR CDR

Figure 8. Software Personnel

total of 20 staff, out of an average staffing
level of 400, left the project during the past
12 months.

Interpretation Notes

a. Understaffing results in schedule slippage
and, if not corrected, in a continuing rate
of slippage. Causal relationships to vari-
ous progress metrics should be examined.

b. Adding staff to a late project will seldom

15

improve the schedule and often causes
further delays.

c. A program that is experiencing a high

personnel turnover rate cannot maintain
needed continuity. Losses that would
impair the project knowledge and experi-
ence base should be discussed with the
contractor.

d. Initial staffing levels should be at least

25 percent of the average staffing level.

Software Volatility Metric

Purpose

The Software Volatility metric tracks changes
in the number of software requirements and
in the contractor’s understanding of these
requirements. The two graphs used for this
metric track requirements changes and Soft-
ware Action Items (SAls). The graph of
requirements changes tracks the tota' number
of software requirements (iypically the num-
ber of “shalls” in the Software Requirements
Specifications (SRSs)) as well as the cumula-
tive number of changes to those require-
ments. The graph of SAIs tracks the number
of unresolved requirement/design issues.
Both graphs are good indicators of require-
ment and design stability. Changes in the
number of requirements (both additions and
deletions) directly impact the software devel-
opment effort. Changes are expected in the
early stages as details of the system’s opera-
tions are being defined and understood. At
some point, however, software requirements
must be frozen. The longer this takes, the
greater the impact on cost and schedule.

Design reviews may have several inconsis-
tencies between the requirements and the
design or within the design itself. When this
occurs, an SAI is opened. It may be closed
by modifying or clarifying the design or by
modifying the requirements. An SAI is
defined as any discrepancy, clarification, or
requirements issue that must be resolved by
either the contractor or the Government.

Behavior

Changes in software requirements can be
expected to be more numerous during
requirements analysis and preliminary design
phases. Changes occurring after CDR may
be expected to have a significant schedule
impact, even if the change is the deletion of
a requirement. Therefore, the plot of cumu-
lative changes is expected to rise more
steeply prior to PDR and show a leveling
off after CDR.

16

The plot of SAls is expected to rise at each
review and then taper off exponentially.
Programs that produce clear and complete
specifications will experience less of a rise
at each review; and programs that have good
communications among the SPO, the system
engineer, and the contractor will experience
a high rate of decay to the curve.

Data Inputs
Each reporting period:
a. The current total number of requirements.

b. The cumulative number of requirement
changes to include additions, deletions,
and modifications.

c. The number of new SAls.
d. The cumulative number of open SAls.

Tailoring Ideas

a. Track the longevity of open SAls, e.g.,
0-30 days, 30-60 days, 60-90 days, and
over 90 days.

b. Track open SAls by priority.

Example Plots

The graph of requirements changes in figure
9a shows an upward trend in the number of
changes prior to PDR and a leveling off
approaching CDR. The changes after PDR
may result in a schedule slip for CDR
because some Computer Software Compo-
nent (CSC) and CSU designs in the Software
Design Documents (SDDs) may have to be
redone.

Figure 9b shows the number of open SAls
peaking at PDR and CDR. The steady
decrease after each review indicates the con-
tractor’s ability to resolve the issues.

1B 55 B2 52 o5 & &8 E v &8 B

B3

(5 23 R 858 = &,

%

&3

Wy A T, T

THEENEE ULE L ENMAEMNMERENTENEFREFATTRIFNRETRNFR FEVVTFTFVEUTF VTS WE W' YR VR ITR IR TR T TR TR T

Interpretation Notes

a. Requirements volatility between CDR b. SAIs open more than 60 days should be
and TRR will result in schedule impacts closely examined. They could have sig:
whose extent must be determined through nificant schedule impacts, especially if
discussions with the contractor. ; they have been termed *‘unimportant.”

REQUIREMENTS

50C
e e wamm TOTAL
E REQUIREMENTS
© N\ CUMULATIVE -} 400
CHANGES
i reerreree aeberssesnanne 1
........ S 2m m
...... 100
0
SDR SSR PDR CDR
Figure 9a. Software Volatility/Software kequirements Changes
‘°° T T]
wem OPENSAls |
80 MW NEWSAls |
i
! (
60 aansane
2
N
3 \
\
40 —\ §\\
N SN\
\ NIBN
RN : N \
\ N
20 D 8-
» \\\\\\\\\k\\\\\ L* \
A Ml .
. |
SSR PDR CDR

F:gure 9b. Software Volatility/SAls

17

-_— TS .

Computer Resource Utilization Metric

Purpose

The Computer Resource Utilization metric
tracks changes in the estimated/actual uti-
lization of target computer resources and
provides warnings if the limits of these
resources are approached. Three resources
typically monitored are CPU timing, memory
(e.g., CPU, mass storage), and 1/O channels
(e.n., communications, bus). The system
architecture (e.g.. parallel, serial, distributed)
will determine how the resources are moni-
tored. but they must be monitored to assure
that the system will fit the planned resources.

Behavior

Most projects experience an upward creep

in resource utilization. Large system acquisi-
tions typically specify a 50 percent spare
capacity. This means that only one-half of
the capacities may be used, leaving 50 per-
cent for growth. If the utilization exceeds 50
percert, the project either has to expand the
resource capabilities or change the system
requirements. Whenever resource capabilities
are expanded, the utilization curves affected
will drop to new values.

Dependencies among resources result in
parallel movements. For example, an expan-
sion of memory not only decreases its utili-
zation, but also may allow the CPU to
operate more efficiently, thus decreasing
CPU utilization. The same memory expan-
sion may also allow larger blocks of data to
be transported, thus reducing utilization of
the 1/0 channels.

Data Inputs

Initial:
a. Planned spare for each resource.
Each reporting period:

a. Estimated/actual permentage of CPU
utilization.

b. Estimated/actual percentage of memory
utilization.,

c¢. Estimated/actual percentage of I/O chan-
nel utilization.

Tailoring Ideas

a. Report combined utilizations in a multi-
resource architecture that uses a load-
leveling operating system.

b. Report utilizations separately in a multi-
resource architecture that has dedicated
functions.

¢. Report average and worst case
utilizations.

d. Report separately for development and
target processors.

e. Consider memory addressing limits of
the architecture when establishing utiliza-
tion limits.

Example Plot

A 50 percent spare requirement was planned
for all three resources. Notice that each of
the utilizations plotted in figure 10 shows a
tendency to increase over time. In this exam-
ple, the CPU utilization was the first
exceed the spare limit and was corrected

by upgrading to a faster CPU. If growth in
the same computer series is not possible,
then impacts may be felt on all computer
resources as well as on system and applica-
tions software. It is necessary to anticipate
growth as early as possible to minimize such
changes.

Interpretation Notes

a. Performance deteriorates quickly when
utilization exceeds 70 percent for real-
time applications.

18

T -V W W S W W AT W WY R IR W M AT W W ST I Y WU W Y WY WAL WY 4 W W e Y

BN J3 2 18 B B XN K e 2

kY
oo

& (B & ==

o !

I R I P VI AL R VR ST LW PR ST W RO RN WV S LU s Fa 22 208 o 2 FA o d o S A B A LA Tl N A Bl ol Tl b Al ke

b. Resource expansions should be planned ¢. Software development costs and sched-
early in the development cycle to take ules increase dramatically as computer
into account the tendency of resource | resource utilization limits are approached
utilizations to increase over time. and optimization forces design and coding

changes.
100 -
!
* T 1T 1
s\ MEMORY
80 %= 1/0 CHANNEL
60
h E - . PLANNED SPARE
g
& 40 . NN
l \\\\\\\\\\\\\\\\\\\\\\\\\ \
o RN AN -~‘\\\\‘(_,\>_\‘ \\\\\\\\\\\\ L. .-
’ 20 et \
L 0
CDR TRR

Figure 10. Computer Resource Utilization

19

Design Complexity Metric

Purpose

The Design Complexity metric tracks the
contractor's ability to maintain an acceptable
level of complexity at the CSU, CSC, and
CSCl levels. A major problem in software
development is the creation of highly com-
plex designs that cannot be readily under-
stood, and therefore are not rigorously
verified through a testing process. Complex
designs are also costly to maintain. The
Design Complexity metric is a measure of
decision structure and is calculated using a
method developed by T. J. McCabe (see
reference 2). If design complexity is con-
trolled so that each CSU, CSC, and CSCI
can be rigorously tested, then system testing
becomes a low-risk area. It has been com-
monly observed that 90 percent of software
problems occur in 10 percent of the code;
therefore, this metric tracks those CSUs

witn the highest complexity, namely, the top

10 percent. If a program design language
(PDL) is used, design complexity is calcu-
lated directly from the PDL logic. Appendix
E defines the calculations for each complex-
ity measure.

Behavior

A design complexity of 7 is considered the
highest a CSU should have without incurring
undue risk. (The exception to this is com-
plexity resulting from the use of a Case
statement.) An average complexity of 7
would not be excessive because only the top
10 percent are being reported. Because CSUs
with the highest complexity may be designed
later in tne schedule, this metric may show
an increasing trend as CSU design pro-
gresses. This trend can be correlated with
the CSU Development Progress metric to
determine whether the projected trend of
complexity will exceed 7 before all CSU
designs are completed. If so, steps can be
taken to prevent this. A CSC and a CSCI
should have maxiimum design complexities

of 40 and 400, respectively. The behavior
described regarding CSU complexity applies
equally to them.

Data inputs
Each reporting period:

a. Average design complexity of the 10
percent most complex CSUs.

b. Average design complexity of the 10
percent most complex CSCs.

¢. Design complexity of the most complex
CSClI.

(Note: For object-oriented designs, this met-
ric will normally apply only at the CSU
level. However, there are cases where it
may apply :0 CSCs and CSCls if the func-
tions are so organized.)

Tailoring Ideas

a. Track reported top 10 percent by cate-
gory; e.g., the number of CSUs whose
design complexity is less than 7, 8 to 20,
and over 20.

b. Track design complexity of all CSCs by
category; e.g., number of CSCs whose
design complexity is less than 40, 40-
60, and over 60.

¢. Track design com lexity of all CSCls.

d. Track code complexity after CDR using
Halstead’s or McCabe's measures [3, 4].

Example Plot

In figure 11, the plot of CSU design com-
plexity shows an initial surge to a complexity
level of 9. The contractor then took steps to
reduce this by dividing overly complex CSUs
into two or more CSUs.

XPF 2t

=2 H

B 923

£ 18 =2

R B BBS B &R’

it B

&S5

XN, "N Y e

CSU DESIGN COMPLEXITY

The plot of CSC design complexity reflects
the incorporation of too many complex CSUs
into a CSC. This was corrected by again
reducing the complexity of individual CSUs
by separating them into two or more CSUs.

CSCI design complexity shows an adverse
trend. A CSCI's complexity may be reduced
by dividing complex CSCs within it into
two or more CSCs.

Interpretation Notes

a. An error found during CSC and CSCI
integration can cost 30 times more to

correct than if found at the CSU level.

b. An error found during systein testing can
cost 90 times more to correct than if
found at the CSU level.

c. Although it has been obscived that 90
percent of the errors are associated with
10 percent of the code, it has also been
observed that 50 percent of the errors are
in only 4 percent of the code. Therefore,
if only the top 4 percent of complex
CSUs could be reduced to an acceptable
level, 50 percent of the potential errors
might be eliminated.

10 -
[
. mmam CSU I PR 50(0)
aaw CSC
8 s CSCl g
(.3 [ECSIOR SPNRPIOTN SARUR SR SSRINE: SVRRPHROPN SYRUIRPRINE SR (SSPRPRTIT . 4SS RIURUSOSR NORRRPRROY RRVRORR SHNPITEN SRS NSRS MO o
R
................................... e 30(0) a
2z
........ O s o Ib711(»)) E
S VR R (NN SR R SO RO TN SR NN SO NN NN W N S B 3
.. 10(0)
0

PDR

Figure 11. Design Complexity

WX
)

L]
»'-\‘

LK)
|.'v
RLN

Schedule Progress Metric

Purpose

The Schedule Progress metric tracks the
contractor’s ability to maintain the software
development schedule by tracking the deliv-
ery of software work packages defined in
the Work Breakdown Structure (WBS). The
program’s estimated schedule can be calcu-
lated each month by applying the relative
progress to date to the program schedule.
The calculation is as follows:

Estimated Program Schedule (months)
Schedule -
(months) BCWP/BCWS

where BCWP is the budgeted cost of work
performed and BCWS is the budgeted cost
of work scheduled. The use of cost data to
estimate progress requires close coordination
with the costing staff to assure that only
software costs are used in this calculation
and that the contractor is credited only for
work performed and confirmed by other
progress metrics such as Design, CSU
Development, Testing, and Incremental
Release Content.

Behavior

It is not unusual for a program to initially
fall behind, because insufficient time is usu-
ally allocated to the design process. Thi:
trend should level off as the design is imple-
mented, but may again occur during testing
due to inadequate test planning and inade-
quate testing at the CSU and CSC levels. It
is important that testing at these levels is
tied to WBS elements to assure visibility
into its adequacy either directly or through

a V&V function. Applying this metric retro-
actively to certain procurements running 50
to 100 percent over schedule shows the
progress to be almost on schedule right up
to system tasting. This means that credit
was given for software development progress

20

that had not occurred. The WBS for software
must be tied to each stage of testing so that
credit is not given until the adequacy and
success of tests at the CSU, CSC. and CSCI
levels have been verified.

Data Inputs

Initial:

a. Number of months in program schedule.
Each reporting period:

a. BCWP for software.

b. BCWS for software.

c. Number of months in program schedule
(if revised).

Tailoring Ideas
a. Track progress separately for each CSCI.

Example Plot

At month 2, the plot in figure 12 indicates
that given the current rate of productivity, it
will require 45 instead of 36 months to com-
plete the project. The ratio of work per-
formed to work scheduled was 80 percent,
resulting in an estimated schedule of 45
months (36/.8 = 45). During succeeding
months productivity dropped to around 70
percent, resulting in an estimated schedule
duration of about 51 months. At this point,
almost halfway through the original 36-
month schedule, the schedule was revised
and extended to 45 months. This change
does not affect computation results because
increasing the schedule by 25 percent also
reduces the work by 20 percent, so the esti-
mated schedule months remain the same.
However, the plot ncw indicates a slip of
orly 6 months versus 15 months from the
original schedule.

B 1.

(B R B B3 2 &

=3

&1

|

4 FRAMRNAANRE NI BNV YN ERERNEINEAER TR W EYRN FEFT LY PR DU W ELLEWGEOLGEE A S e

Interpretation Notes

l a. The plot of this metric can be used to b. If the trend is down, it indicates that
identify and extrapolate trends. If the productivity is under control and improv-
l trend is up, it implies a worsening condi- ing, and that the overall schedule can be
tion. An extrapolation can be made to predicted by extrapolating this plot and
predict the estimated schedule by extend- again seeking the intersection of the plot
l ing the extrapolation until its value inter- value with the abscissa.
sects with the same value on the abscissa.
This is the estimated schedule based on
I the trend.
l 60
)
B 50 ey SSSA
, NN
: K \\\\\\\\:\\
S
B
e BN
:

NN CURRENT
ESTIMATE

su#® REVISED
SCHEDULE

I N BN
SDR SSR PDR CDR

Figure 12, Schedule Progress

Design Progress Metric

Purpose

The Design Progress metric measures the
contractor’s abZlity to maintain progress dur-
ing the initial software development phases.
It tracks the development of the Software
Requirements Specifications (SRSs) during
the system design and software requirements
analysis phases, and the development of the
preliminary design portion of the Software
Design Documents (SDDs) during the pre-
liminary design phase. Each of these docu-
ments culminates in a review — Software
Specification Review (SSR) for the SRSs,
and Preliminary Design Review (PDR) for
the preliminary design portion of the SDDs.
Tracking the progress of the SRSs and SDDs
also provides visibility into the contractor’s
ability to hold SSR and PDR on schedule.

Behavior

System/Segment Specification (SSS) require-
ments are initially allocated between hard-
ware, software, and personnel in the
System/Segme' t Design Document (SSDD)
at System Design Review (SDR). The soft-
ware requirements in the SSDD are then
allocated to CSClIs that are each documented
in an SRS. Shortly after System Require-
ments Review (SRR) the contractor should
establish a schedule for developing each
SRS. This schedule should indicate comple-
tion 1 to 2 months prior to SSR. Similarly,
the SRS requirements are allocated to CSCs
and documented in the preliminary desiga
version of the SDDs. This activity should
be scheduled for completion 1 to 2 months
prior to PDR. Development of the SRSs and
the SDDs may fall behind the plan if system
requirements are not clearly defined. Clarifi-
cations may generate SAls (another metric)
whose open status may also lead to delays
in scheduled reviews.

Delays during these phases can have both
positive and negative effects on the balance

24

of the project schedule. If delays in SSR

and PDR result in clear and precisely defined
requirements, then improvements in the bal-
ance of the schedule may more than offset
those days. However, if delays in SSR and
PDR still do not result in well-defined
requirements, then more and longer delays
can be expected throughout the project, with
a corresponding high incidence of SAls.

Data Inputs

Initial:

a. Number of SSDD software requirements
to be documented in each SRS each
month.

b. Number of SRS requirements to be docu-
mented as CSCs in the SDDs each
month.

Each reporting period:

a. Actual number of SSDD software require-
ments completely documented in SRSs.

b. Actual number of SRS requirements com-
pletely documented as CSCs in the
SDDs.

Tailoring Ideas

a. Track the development of the SDDs dur-
ing the detailed design phase; i.c., the
allocation of CSC requirements to CSUs.
Completion should be scheduled 1 to 2
months prior to CDR.

Example Plot

In figure 13 the actual number of require-
ments documented in the SRSs is shown to
fall behind the plan, but a trend developed
carly and provided a good basis for planning.
Based on this slip, the SSR was delayed 2
months. Due to the quality of the SRSs pro-
duced, however, it was possible to begin

B (B B3 B S8 28 & & 5 O =

&

AP
g

B =

REQUIREMENTS

development of the SDDs a month ahead of
the rescheduled SSR date, resulting in only
a 1-month overall schedule slip. It also
appears that due to the SRSs’ quality, the
SDDs are being developed at the scheduled
rate, although a month behind schedule,

Interpretation Notes

a. If the deviation between planned and
actual data is increasing, it implies that
the further into the requirement speci-

. If the deviation between planned and

R T

fication the contractor goes, the more
confusing, inconsistent, unclear, and/or
untestable the requirements become. This
implies major problems with the SSDD.
No approval to proceed beyond SSR
should be given until a good SRS is pro-
duced and clearly understood.

actual data is decreasing, it implies that
requirement problems may already have
been addressed and that the completion
of this task can be projected.

250
DY) S S SR W SR S S
....... S
&
150 b . gl AN ?
%
100 SRS
DD REQUIREMENTS
50 o e “§ ez ORIGINAL PLAN
............ \\' REVISED PLAN
. oo ACTUAL
0 o _ 3 { i
SRR SDR SSR —% (SSR) PDR

Figure 13. Design Progress

T I AT LAL Y P W B B L SN N W W W A " i —— - ——

CSU Development Progress Metric

Purpose

The CSU Development Progress metric
tracks the contractor’s ability (0 keep CSU
design, coding, test, and integration activities
on schedule. After CDR, the next formal
milestone that indicates the status of software
development is Test Readiness Revie'w
(TRR). This is too late in a program to
recover if significant probiems are not dis-
covered until then. This metric provides
visibility into development progress through-
out the deveclopment phase.

Behavior

The design of CSUs usually begins around
PDR. A count is plotted of the number of
CSU designs that have passed internal
review. After CDR, when the contractor
begins coding, a healthy program will expe-
rience a steady progression of CSU test com-
pletions. Sporadic CSU development can be
caused by factors such as overutilized devel-
opment computers or under-experienced
staff. This results in a high-pressure environ-
ment in which all software becomes due at
once. For a well-run program, the plots of
CSUs designed, tested, and integrated should
each rise with a fairly constant slope.

The CSU design, test, and integration sched-
ule should be reported by the contractor at
CDR. The number of CSUs whose design
packages have been closed, the number of
CSUs passing CSU test and placed under
configuration control, and the number of
CSUs integrated will be updated at the end
of each calendar month of the contract.

Data Inputs
Initial:

a. Number of CSUs to be designed each
month.

E. Number of CSUs ic be tested each
month.

26

¢. Number of CSUs to be integrated each
month.

Each reporting period:

a. Actual number of CSUs designed.
b. Actual number of CSUs tested.

¢. Actual number of CSUs integrated.

(Note: Ada CSU design progress may be
measured by counting tac number of pack-
ages whose specifications are complete. This
is using Ada as a PDL and measuring CSU
(package) design progress to completion.
For object-oriented designs, CSU integration
progress may be tied to an integration plan
rather than to CSCs.)

Tailoring Ideas

a. Plot very large CSClIs separately or plot
each CSCI when there are only two or
three in the system.

b. Track CSU development progress by
CSCs.

¢. Track number of CSUs for which PDL
code has been developed.

d. Report defect density from errors found
at CSU design inspections, i.e., average
number of defects per CSU.

¢. Report defect density from errors found
at CSU test inspections, i.e., average
number of defects per CSU.

Example Plot

In figure 14, the plot of CSUs actually
designed follows closely the plot of CSUs
planned to be designed until 3 months after
PDR. At this point, the actual number begins
to deviate significantly from the planned
number. The contractor’s explanation was
that changing reauirements prolonged the
design of the systein.

(=T~

&8 1)

= ol

(N & KB 5 5 60 a8 tB =

g1 &=

CSUs

1000

WPV TS T T T TETUH S ESFESF T E ST ETE TTE S MA aE S OGN S .S T -

1 i H H
i i
= FLANNED ...
ssws ACTUAL
Ry A% . CSUs
INTEGRATED
0 !
PDR CDR TRR

Figure 14. CSU Development Progress

The number of CSUs actually tested and
integrated lags behind the plan. The SPO
ascertained from the contractor that the lag
resulted from an increased number of lines
of code to be developed, tested, and inte-
grated. These slips may indicate that the
project schedule cannot be met. The SPO
should closely monitor the progress of testing
and integration to effect any possible sched-
ule imprevements with the contractor.

Interpretation Notes

Wide variations in schedule profiles have
been followed by different projects. The
following general information should not be
misused through overly specific interpreta-
tion. It is offered on the premise that some
guidance is better than none. For more data,
see references 1 and S. Contributors to wide

variations in schedule performance are the
availability and use of modern software
development tools such as PDLs, automated
debugging facilities, and database 1ools.

a. Schedule for Software Development

The number of calendar months (M) from
the beginning of software design to the
end of PCA is related to the number of
software development staff months (SM)
necessary to complete the software.
(Complete software refers to software
that has been designed, coded, tested,
integrated, system tested, and docu-
mented.) The following formulas have
been empirically cerived from a database
of ESD/MITRE projects. The formulas
describe curves for threz project percentile
values. For example, only 5 percent of

the projects in the Construction Cost
Model (COCOMO) database were able
to preserve a schedule equal to or shorter
than the schedule predicted by M =

3*%%/SM.

Percentile
M=3*'/SM 5%
M=3.8+/SM 50%
M=4.6*"VSM 95%

b. Source Lines of Code per Staff Month

Typical SLOC/SM values are:

150 for easy code
70 for moderately difficult code (C’I
system)
30 for difficult code (e.g., security)

(Note: SM refers to the number of software

28

W MEL/RTRGEW N W AW N BRI N IRLUFWSEwAT B IS ORI B,

staff months expended from contract award
through PCA.)

c. Allocation of Staff and Schedule for Soft-
ware Development

These are desired values based on experi-
ence with Mission Critical Computer
Resource (MCCR) software programs
similar to the C°I systems developed at
ESD. Wide variations from these values
have been observed, but experience indi-
cates that increases in design effort lead
to reduced integration and test effort and
to higher quality products.

Staff Months Schedule

8

Design 45% 50%
CSU Code and Test 20% 15%
Integration and 35% 35%

System Test

@) D B " 6% == &%

8 22 B = = 9!

-
a3 ==

AT R N AENANMAAERETUEAE A TRANE M E NN A RAR Y RN A Y .0 W W s w

Testing Progress Metric

Purpose

The Testing Progress metric measures the
contractor’s ability to maintain testing prog-
ress and the degree to which the software is
meeting system requirements. Two separat.
graphs are used for this metric. The test
status graph tracks the progress of CSCI and
system testing against a plan. A graph of
Software Problem Reports (SPRs) focuses
attention on the number of open software
problems and the density of discovered
errors.

The test status graph shows separate plots
for CSCI tormal qualification tests and for
system tests. CSCI testing begins after TRR,
and system testin~ begins at the conclusion
of CSCI testing and is completed prior to
PCA.

The SPR graph plots the number of new
SPRs reported each month and the current
number of open SPRs. Also ploited is SPR
density, which is the cu' ..ulative number of
SPRs per 1000 SLOC. A separate set of
SPR plots is shown for problems identified
during CSCI and <v: : n testing.

Behavior

The test status graph snows the planned and
actual counts of CSCI and system tests. The
plot of tests completed sh .ld overlay the
plot of tests scheduled if au tests are passed
on schedule. However, st programs expe-
rience schedule slips or tailed tests. There-
fore, the plot of tests completed can be
expected to fall below the plot of tests sched-
uled. The extent of this difference and the
trend it proscribes are indicators of the readi-
ness of the CSCls and/or the system for
testing and of the time it will take to com-
plete testing.

The SPR graph provides a more detailed
view of testing progress. If the number

29

of open SPRs from CSC testing is not
approaching zero as TRR approaches (or as
PCA approaches for CSCI and system test-
ing), then these milestones will have to be
delayed. Schedule slips may be estimated by

- observing the trend of open SPRs. An ambi-

tious test plan may prevent the number of
open problems from decreasing until all tests
have been performed. This is to say that
new problems may be generated faster than
old ones can be resolved.

Data Inputs

Initial;

a. Planned number of CSCI tests to be com-
pleted during each month of the contract.

b. Planned number of system tesis to be
completed during each month of the
contract.

Each reporting period:

a. Number of CSCI tests passed.

b. Number of system tests completed.
¢. Number of new SPRs.

d. Cumulative number of open SPRs.

e. SPR density: cumulative number of SPRs
per 1000 SLOC.

(Note: If the design is object-oriented and/or
is not organized by CSCs and CSClIs, then
testing progress must be tracked against
functionality tests described in both the inte-
gration and system test plans.)

Tailoring Ideas

a. Track the longevity of open SPRs. For
example, track the number open 0-30
days, 30-60 days, 60-90 days, and over
90 days.

b. Track open SPRs by priority, e.g., high,
medium, and low; or critical for integra-

tion, critical for initial operation, or other.

c. Track open SPRs by type of software
affected, e.g., application, operating sys-
tem, and support test.

d. Report SPRs by open, assigned, pending,
resolved, rejected, and/or closed.

e. Report SPR density by category; e.g.,
the number of CSUs whose SPR density
is 0-10, 11-20, 21-30, and over 30.

Example Plots

In the example test status graph shown in
figure [5a, the plot of tests completed falls

behind those scheduled. It can be expected
that this trend will continue unless the con-
tractor can increase the rate of testing by
increasing the number of qualified personnel
conducting tests or the number of hours
spent each day performing tests, and neither
of these is likely. This means that the start
of system testing. will be delayed and that its
rate of progress will probably be similar to
that for CSCI testing.

The SPR graph in figure 15b shows a sepa-
rate plot for SPRs occurring prior to CSCI
and system testing. The TRR was resched-
uled because there were too many open
SPRs. The SPR density ranges between 8
and 20 SPRs/1000 SLOC, which is within
the normal range.

2500
R
®E8 PLANNED .- |
we ACTUAL
2000
’
1500 +
:
1000 CSCT SYSTEM -}
N
FTI) R S . S - A
0
TRR

PCA

Figure 15a. Testing Progress/Test Status

30

T W W S Ay T - - . e o e e

== =2

B

AR TS W R WL WASNRIWA " \VVEV R A\FE T RN TR U AR ARATAR-§ TS e

| . mat
]
' T —
4m e OPEN SPR3 20
NN\ SPR
l \\\\\\\ DENSITY ...
N - @
N R |
300 S N R 15 @
S \ N i
I E Q‘\\\\\\ \\\\\\\
& S g
NP
l 200 |5 10 ;
B 100 ﬁ 5
. N\ o
| TRR —» (TRR) PCA =& (PCA)

Interpretation Notes

a. The number of SPRs/1000 SLOC is an
indication of testing adequacy and of
code quality. A normal range may be
between 5 and 30 SPRs/1000 SLOC,
with 10 to 20 a safer range. Too few
SPRs may indicate poor testing and too
many may indicate poor code quality. In

K}

Figure 15b. Testing Progress/Software Problem Reports

. If the plot of open SPRs has a positive

either case, the code may still contain a
large number of undetected errors.

slope, it indicates that problems are
being identified faster than they can be
resolved. If the slope is negative, then
the resolution of problems can be
projected.

Incremental Release Content Metric

Purpose

The Incremental Release Content metric
tracks the schedrle and the number of CSUs
per release in order to monitor the contrac-
tor’s ability to preserve schedule and func-
tionality in each planned release. This metric
also applies to software builds. A common
approach used to preserve schedule is to
postpone functional capability. Decreases in
the number of CSUs per release may indicate
an off-loading of functions from early
releases to later releases. Increases in the
number of CSUs per release may indicate
that a program is having unanticipated
growth in the complexity of the functions to
be delivered.

Behavior

Ideal behavior is for the number of CSUs in
each release and the schedule dates to remain
unchanged. However, typical behavior is for
the number of CSUs in early releases to
decrease and the number in later releases to
increase as the release dates approach. This
postponement is exacerbated by code
growth, which also increases the number of
CSUs in later releases. In a program whose
designs were prepared accurately and com-
pletely for PDR and CDR, the number of
CSUs should not increase significantly after
CDR. A program being developed on sched-
ule will implement the planned number of
CSUs in each release.

The planned number of CSUs to be included
in each anticipated release is updated at the
end of each month of the contract, but the
original plan always remains on the graph.
The original plan for each release extends to
the release date.

(Note: The term “release” does not necessai-
ily refer to contractually obligated delivery
of software. The normal software develop-
ment process, in which the contractor assem-

32

bles increasing portions of the software,
results in releases that may be monitored.
As each of these is prepared, the functions
expected car: be compared to the functions
actually included.)

Data Inputs

Initial;

a. Planned number of CSUs to be included
in each release.

b. Planned completion date for each release.
Each reporting period:

a. Current number of CSUs to be included
in each release.

b. Current completion date for each release.

Tailoring Ideas

a. Track the number of CSCs in each release
as another measure of the functionality
included in each release.

b. Track the number of requirements satis-
fied in each release.

Example Plot

Figure 16 shows content and schedule: a
two-dimensional tracking of planned
releases. Shortly after CDR the number of
CSUs included in release 1 is reduced from
200 to approximately 150. This means that
250 CSUs will have to be integrated for
release 2; not the 200 originally planned.
The number of CSUs in release 2 is reduced
the following month from 400 to 350,
thereby bringing the increment between the
two builds back to the 200 CSUs originally
planned. In the meantime, the number of
CSUs in release 3 has been increasing due
to an increase in total software size. At the
point where release 2A begins, the number

IR T RO R WU AR TECOURU WP C AP TR U W TR PV TG TR NIV T R A PO TGO P P PR PO MM T U TLN PUW A T B TG A AT

a

¥

=Y &8 i

i 255 B B &5

723

B B2 R 2 e @

2

o M,,.;mﬁ

& T

g1 ==

CSUs

of CSUs to be integrated for release 3 has
grown to almost 500. It is obvious to the
contractor that an additional release is
needed; hence, release 2A is inserted, wh'ch
integrates 300 of the 500 CSUs, leaving
approximately 200 for relcase 3.

Another solution not shown in figure 16
would be to reschedule the completion dates
for each release. However, this is less
acceptable to both the contractor and the
Government because each schedule slip
attracts management's attention. In this
example, however, the productivity rates
implied by the progress to date indicate that

1000

MBS AIET B Il W T BT EST ST IR I T BT W UM W WY W ST W Y W Y W ey W

the scheduled completion dates for releases
2A and 3 will likely be slipped. This likeli-
hood should be discussed with the contractor.

interpretation Notes

a. The number of CSUs per release should
remain reasonably stable. However, a
small increase in the number of CSUs
can be expected as the program’s design
matures.

b. Builds should be encouraged that corre-
spond to operationally useful capabilities
as soon as it is practicable.

......

ssm ORIGINAL
PLAN

..........

Figure 16. Incremental Release Content

|

VI W YRNER@FTwETEA PSRBT S R EATA IV B RS vy

List of References
1. Boehm, Barry W., Software Engineering 3. Halstead, M. H., Elements of Software
Economics, Englewood Cliffs, New Science, New York: Elsiver, 1577, pp.
Jersey: Prentice-Hall, 1981. . 274-279.
This book describes the operation and 4. McCabe, T. J., “A Complexity Mea-
philosophy behind one of the important sure,” IEEE Transactions on Software
software cost estimating models in use Engineering, Vol. SE-2, No. 4, Decem-
1 today. It discusses factors that impact ber 1976, pp. 308-320.
| Goveiommannenedule of software 5. Albrecht, A. J., and J. E. Gaffney, Jr.,
) “Software Function, Source Lines of
f 2. McCabe, T. J., et al., “Structured Test- Code, and Development Effort Predic-
ing,” 14th edition, McCabe and Associ- tion: A Software Science Validation,”
ates, Columbia, Maryland, September IEEE Transactions on Software Engineer-
1987. ing, Vol. SE-9, No. 6, November 1983,

pp. 639-648.

Bibliography

Beizer, B., Software System Testing und
Quality Assurance, New York: Van Nostrand
Reinhold, 1984.

Conte, S. D., H. E. Dunsmore, and V. Y.
Shen, Software Engineering Metrics and
Models, Menlo Park, California: Benjamin/
Cummings, 1986.

DeMarco, T., Structured Analysis and Sys-
tem Specification, Englewood Cliffs, New
Jersey: Prentice-Hall, 1978.

Mills, H. D., Software Productivity, Boston,
Massachusetts: Little, Brown and Co., 1983.

Pressman, Roger S., Software Engineering:
A Practitioner s Approach, New York:
McGraw-Hill, 1982.

This book provides an introduction to the
methodology of acquiring software. Most of
the cost estimation information in chapter
four is more usefully covered in Boehm’s
book, but the remainder of this book prc-
vides a useful perspective on the process of
acquiring or developing software.

Tumer, J., “The Structure of Modular Pro-
grams,” Communications of the ACM,

Vol. 23, No. 5, May 1980, pp. 272-277.

R S B 2 83 5 B3 4 B B 52 K8 2 553

2 I

LR

APPENDIX A

General Software Acquisition Information

The metrics described in Section 3 are
accompanied by notes that relate to each
metric. This appendix contains phase-specific
information applicable to many software
acquisitions. The information was obtained
from software acquisition personnel and
from references 1 and 5, and is intended to
provide general guidance. Exceptions to
these guidelines may be appropriate for spe-
cific programs; but when an exception is
made, it is important to have a clear under-
standing of the justification.

1. Pre-Award
a. Resource Availability

Software development resources shouid
be evaluated in a manner similar to hard-
ware manufacturing facilities:

(1) Large software development projects
should use modern methodclogies with
automated support tools for software
development. Tools should be available
for such functions as static analysis, test-
ing, design, measurements, and configu-
ration management.

(2) Sources of experienced software engi-
neering personnel must be identified and
available during the designated software
development time period.

b. Requirements Definition

System requirements must not be con-
fused with design or implementation
details or vice versa.

c. Contract Preparation

The Instructions for Proposal Preparation
(IFPP), Statement of Work (SOW), and
CDRL should include requirements for
the contractor to deliver the Sefiware
Management Metrics graphs and data.

37

9. Source Selection

a. Difficult and high-risk functions should
receive early and adequate attention.
Workable solutions should be demon-
strated before start of full-scale
development.

b. The software development schedule must
accommodate the practicalities of the
process. It should not be *“success ori-
ented.” Schedule compression adds
greatly to cost and does not generally
produce an earlier product.

c. The difficulty of a project increases as
more organizations, Government as well
as contractor, participate. The Govern-
ment should avoid becoming an interface
between two or more contractors.

d. The Government should assure that any
software development by subcontractors
is closely managed by the prime con-
tractor. This is best accomplished by
collocation.

e. Large development projects should have
functional capabilities implemented in
phased releases. If schedule problems
develop, useful capabilities can be pro-
vided before the development program is
completed.

3. Preliminary and Critical Design

Reviews

a. Development phases should not be
allowed to proceed faster than the
achieved ground work can support. For
example, the design should not advance
beyond the status of requirements defini-
tion, coding beyond what has been
designed, and testing beyond the stability
of the product.

b. Monthly or bimonthly software TIMs
should supplement the formal reviews.

= B

Programs that are large or on tight sched- b. The formal software acceptance testing

ules should have in-plant Government schedule should allow time and access to

technical representatives so that more the equipment for Government personnel -
frequent contact is maintained between to exercise the system.
the developers and the acquisition agency. -

c. Integration test planning should be com-

pleted early enough to ensure that test
4. Test and Integration issues can influence design, and allow E
a. Software should be tested by a separate long-lead-time test facilities to be
and independent organization from that acquired. For most programs, test plan-
which developed the software. ning should start before PDR. E

.
LCOORNE

o

38

APPENDIX B

Sample DID Backup Sheet

Possible uses:
DI-A-7089 Conference Minutes
DI-MGMT-80227/T Contractor Progress,
Status, and Management Report

The contractor shall substitute or add the
following to Blocks 3 and 10 of the DID:

Block 3: to provide the USAF with insight
into the software development progress,
status, and problem areas.

‘Block 10 replace section 10 with the
following:

The Software Management Metrics are a
high-level summary of the status of the soft-
ware development effort. Specific guidelines
for their contents are given in the paragraphs
below.

In the context of this DID, the term “current
reporting period” shall refer to the interval
of time between the past (i.e., most recent)
and present submission dates. The frequency
of submission for the report is provided in
the CDRL item for this DID.

The contractor shall provide data for the
metrics listed below in both graphic and
tabular form. This information shall be
updated as necessary for the current reporting
period. The metrics data shall be provided

in graphics form at the contract level for
each contractor/subcontractor. Graphs shall
also be prepared at the CSCI level for certain
metrics as designated below. Additional
graphs shall be provided as required to
address high-risk or problem CSClIs. Graphs
show 12 months of history and 5 months of
projections where appropriate. Revised plans
may be added to the graphs, but previous
plans including the original plan shall not

be removed.

Software Size
For the current reporting period, provide in

39

tabular and graphic form for each CSCI an
estimate of:

1. Newly developed Source Lines of Code
(SLOC);

2. Reused SLOC — existing code used as
is;

3. Modified SLOC — existing code requir-
ing change; and

4. Total SLOC — all code (sum of above).

SLOC includes each source statement created
by project personnel and processed into
machine code. It excludes comments and
unmodified utility software. It includes job
control language, format statements, and
data declarations. It also includes newly
developed support software.

Software Personnel

Provide a plan that includes, for each month
of the contract:

1. The planned number of software person-
nel, and

2. The planned number of experienced soft-
ware personnel.

For the current reporting period, provide
actual counts of’

1. The total number of software personnel,

2. The number of experienced personnel,
and

3. The number of unplanned personnel
losses.

Software personnel include engineering and
management personnel directly involved

with software system planning, requirements -

definition, design, coding, test, integration,
documentation, configuration management,
and quality assurance. Experienced personnel
are defined as those with over 5 years of
experience, of which 3 years are with sys-
tems similar to the one under development.

Software Volatility
For the current reporting period, provide:

1. The current total number of software
requirements,

2. The cumulative number of requirements
changes,

3. The number of new Software Action
Items (SAls), and

4. The cumulative number of open SAls.

An SAl is defined as any discrepancy, clari-
fication item, or requirement issue that must
be resolved by either the contractor or the
Government.

Computer Resource Utilization

For the current reporting period, provide
estimated percentage utilizations of:

1. CPU computation power for each CPU
in multi-CPU configurations,

2. On-line memory, and
3. 1/0 channe! capacity.

Design Complexity
For the current reporting period, provide:

1. The average design complexity of the 10
percent most complex CSUs,

2. The average design complexity of the 10
percent most complex CSCs, and

3. The design complexity of the most com-
plex CSCL

(Note: See attached for definition and
discussion of design complexities. (This
discussion is contained in appendix E of this
document.))

Schedule Progress

Initially provide the number of months in
the program schedule.

For the current reporting period, provide:

1. The budgeted cost of work performed
(BCWP) for software,

2. The budgeted cost of work scheduled
(BCWYS) for software, and

3. The number of months in the program
schedule (if revised).

Design Progress
Provide a plan that includes, for each month
of the contract:

1. The number of System/Segment Design
Document (SSDD) software requirements
to be allocated and documented in Soft-
ware Requirement Specifications (SRSs)
each month, and

2. The number of SRS requirements to be
allocated and documented as CSCs in
Softv-are Design Documents (SDDs)
each month.

For the current reporting period, provide:

1. The number of SSDD software require-
ments completely docurnented in SRSs,
and

2. The number of SRS requirements com-
pletely documented as CSCs in SCDs.

CSU Development Progress

Provide a plan that includes, for each month
of the contract:

1. The number of CSUs to be designed,
2. The number of CSUs to be tested, and
3. The number of CSUs to be integrated.

For the current reporting period, provide
actual counts of:

1. The number of CSUs designed,
2. The number of CSUs tested, and
3. The number of CSUs integrated.

B =B

g i

o
e
—

>
N
.

) e r
M ¥ ¥

=

n

Testing Progress
Provide a test plan that includes, for each
month of the contract:

1. The number of CSC tests,
2. The number of CSCI tests, and

3. The number of system tests scheduled to
be performed.

For the current reporting period, provide:

1. The cumulative number of CSC, CSCI,
and system tests passed;

2. The number of new software problem
reports (SPRs);

3. The cumulative number of open SPRs;
and

41

4. The cumulative number of SPRs per 1000
SLOC.

incremental Release Content
Provide a plan that includes:

1. The number of CSUs to be included in
each incremental build/release, and

2. The completion date for each incremental
build/release.

For the current reporting period, provide:

1. The number of CSUs that were added to
or deleted from each incyemental build/
release, and

2. Any changes in completion dates for
each incremental build/release.

I
A

g ¥
Tt
i

APPENDIX C

Enhanced DID Backup Sheet

Possible uses:
DI-A-7089 Conference Minutes
DI-MGMT-80227/T Contractor’s Progress,
Status, and Management Report

The contractor shall substitute or add the
following to Blocks 3 and 10 of the DID:

Block 3: to provide the USAF with insight
into the software development progress,
status, and problem areas.

Block 10: replace section 10 with the
following:

The Software Management Metrics are a
high-level summary of the status of the soft-
ware development effort. Specific guidelines
for their contents are given in the paragraphs
below.

In the context of this DID, the term “current
reporting period” shall refer to the interval
of time between the past (i.e., most recent)
and present submission dates. The frequency
of submission for the report is provided in
the CDRL item for this DID.

The contractor shall provide data for the
metrics listed below in both graphic and
tabular form. This information shall be
updated as necessary for the current reporting
period. The metrics data shall be provided

in graphics form at the contract level for
each contractor/subcontractor. Graphs shall
also be prepared at the CSCI level for certain
metrics as designated below. Additional
graphs shall be provided as required to
address high-risk or problem CSCIs. Graphs
show 12 months of history and 5 months of
projections where appropriate. Revised plans
may be added to the graphs, but previous
plans, including the original plan, shall not
be removed.

Software Size
For the current reporting period, provide in

tabular and graphic form for each CSCI and

for each source code language an estimate

of:

1. Newly developed Source Lines of Code
(SLOC);

2. Reused SLOC — existing code used as
is;

3. Modified SLOC — existing code requir-
ing change; and
4. Total SLOC — all code (sum of above).

(Note: SLOC is equal to the count of all
nonliteral semicolons (;) in each Ada

package.)

Software Personnel

Provide a plan for each contractor/
subcontractor that includes, for each
month of the contract:

1. The planned number of software
‘personnel,

2. The planned number of Ada software
personnel, and

3. The planned number of experienced soft-
ware personnel.

For the current reporting period, provide for
each contractor/subcontractor actual counts
of:

1. The total number of software personnel,
2. The number of Ada software personnel,

3. The number of experienced personnel,
and

4. The number of unplanned personnel
losses.

Software personnel include engineering and
management personnel directly involved
with software system planning, requirements
definition, design, coding, test, incegration,
documentation, configuration management,
and quality assurance. Experienced personnel
are defined as those with over 5 years of
experience, of which 3 years are with sys-
tems similar to the one under development.

Software Volatility
For the current reporting period, provide:

1. The current total number of software
requirements,

2. The cumulative number of requirements
changes,

3. The number of new Software Action
Items (SAls),

4. The cumulative number of open SAls,
and

5. The number of SAIs open 0~-30 days,
31-60 days, 61-90 days, and over 90
days.

An SAI is defined as any discrepancy, clari-
fication item, or requirement issue that must
be resolved by either the contractor or the
Government.

Computer Resource Utilization

For the current reporting period, provide
estimated percentage utilizations of:

1. CPU computation power for each CPU
in multi-CPU configurations,

2. On-line memory for each CPU, and
3. 1/O channel capacity.

Design Complexity
For the current reporting period, provide:

1. The average design complexity of the 10
percent most complex CSUs,

2. The average design complexity of the 10
percent most complex CSCs,

3. The design complexity of each CSCI,
and

4. The number of the top 10 percent most
complex CSUs whose design complexity
is less than 8, 8 to 20, and over 20.

(Note: See the attached for the definition
and discussion of design complexities. (This
discussion is contained in appendix E of this
document.))

Schedule Progress

Initially provide the number of months in
the program schedule.

For the current reporting period, provide:

1. The budgeted cost of work performed
(BCWP) for software,

2. The budgeted cost of work scheduled
(BCWS) for software, and

3. The number of months in the program
schedule (if revised).

Design Progress
Provide a plan that includes, for each month
of the contract:

1. The number of System/Segment Design
Document (SSDD) software requirements
to be documented in Software Require-
ment Specifications (SRSs) each month,

2. The number of SRS requirements to be
allocated and documented as CSCs in
Software Design Documents (SDDs)
each month, and

3. The number of CSC requirements to be
allocated and documented as CSUs in
SDDs each month.

For the current reporting period, provide:

1. The number of SSDD software require-
ments completely documented in SRSs,

2. The number of SRS requirements com-
pletely documented as CSCs in SDDs,
and

3. The number of CSC requirements com-
pletely documented as CSUs in SDDs.

B &EEBB & 58 -

r s
-~

=2 1P B3

=73

-' o] -_'- I3
n - m ‘ m .‘B m .

- N e

L b |

CSU Development Progress

For each CSCI, provide a plan in both
graphic and tabular form that includes, for
each month of the contract:

1. The number of CSUs to be designed,
2. The number of CSUs to be tested, and
3. The number of CSUs to be integrated.

For the current reporting period, provide for
each CSCI in both graphic and tabular form
actual counts of:

1. The number of CSUs designed,
2. The number of CSUs tested, and
3. The number of CSUs integrated.

Testing Progress
Provide a test plan that includes, for each
month of the contract:

1. The number of CSC tests,
2. The number of CSCI tests, and

3. The number of system tests scheduled to
be performed.

For the current reporting period, provide:

1. The cumulative number of CSC, CSCI,
and system tests passed;

2. 1he number of new software problem
reports (SPRs);

3. The cumulative number of open SPRs;

4. SPR density, i.e., the cumulative number
of SPRs per 1000 SLOC;

5. The number of SPRs that have been open
0-30 days, 31-60 days, 61-90 days, and
over 90 days; and

6. The number of CSUs whose SPR density
is 0-10, 11-20, 21-30, and over 30.

Incremental Release Content
Provide a plan that includes:

1. The number of CSUs to be included in
each incremental build/release,

2. The number of requirements to be imple-
mented in each incremental build/release,
and

3. The compietion date for each incremental
build/release.

For the current reporting period, provide:

1. The number of CSUs that were added to
or deleted from each incremental build/
release,

2. The number of fequilements that were
added to or deleted from each incremental
build/release, and

3. Any changes in completion dates for
each incremental build/release.

-
o~ g
ingibonl

T e ¥
“'"4".‘7‘-»-?, -~
LS e

APPENDIX D

Special Terms
SLOC

New SLOC
Reused SLOC

Modified SLOC
Reporting Period

Source Code
Language

Staff

Target Computer
Resource

Glossary

Source Lines of Code — includes all source statements
created by project personnel and processed into
machine code. It excludes comments and unmodified
utility software. It includes job control language, for-
mat statements, and data declarations. It also includes
newly developed support software.

SLOC newly developed, that is, not copied from
another source.

SLOC copied from another source, then reused without
change.

SLOC copied from another source and modified.

A symbol for denoting the intervals for which the Soft-
ware Me.iagement Metrics are collected. For example,
if the reporting period is monthly, the reporting period

could be the number of the month after contract award.

The language used during software development, for
example, PL/I, Ada, Assembly, and so on.

All those directly involved in the software development
effort, including Project Manager, Project Leader,
Programmer, Quality Assurance Staff, and Configura-
tion Management Staff. Also, a person or the frac-
tional amount of a person’s time devoted to the
software development effort; for example, a staff
member who is devoting only half time to this program
would be counted as (.5).

The computer resource to be used in the delivered
operational system.

Ny
o~

Acronymns

Al Artificial Intelligence

BCWP Budgeted Cost of Work Performed

BCWS Budgeted Cost of Work Scheduled

CDR Critical Design Review

CDRL Contract Data Requirements List

COTS Commercial Off-the-Shelf

CPU Central Processing Unit

CSC Computer Software Component

CSCI Computer Software Configuration
Item

CSuU Computer Software Unit

DBMS Database Management System

DID Data Item Description

IFPP Instructions for Proposal
Preparation

IRC Incremental Release Content

M Months

MCCR Mission Critical Computer
Resource

MOTS Modified Off-the-Shelf

PCA Physical Configuration Audit

49

PDL
PDR
PMR
QA
SAl
SDD
SDR
SM
SOw
SPO
SPR
SRR
SRS

SSDD
SSR
TIM
TRR
V&V
WBS

Program Design Language
Preliminary Design Review
Program Management Review
Quality Assarance

Software Action Item
Software Design Document
System Design Review

Staff Months

Statement of Work

System Program Office
Software Problem Report
System Requirements Review

Software Requirements
Specification

System/Segment Design Document
Software Specification Review
Technical Interchange Meeting
Test Readiness Review

Validation & Verification

Work Breakdown Structure

.

APPENDIX E
Design Complexity Definitions
(See References 2 and 4)
Cyclomatic Complexity CSVU Design Complexity
The number of linearly independent paths in The cyclomatic complexity of a CSU
a CSU that, when taken in combinatioi reducea to include only logic that interfaces
will generate every possible path. Generally with other CSUs and designated as DC(U).
represented as: A black node in the diagram represents an

interface with another CSU.
DCU)=7-6+2=3

C(U) =E-N + 2 where :

E is the number of connections between
nodes, and
N is the number of nodes, e.g.:

CU)=12-10+2 =4

CSC Design Complexity
The number of basis paths or subtrees that,
when taken in linear combination, will gen-
In the above example, the complexity is erate the entire set of subtrees for a CSC. It
- calculated to be 4, indicating that there are is equal to the sum of CSU design complex-
possible path: DC(CSC) = DC(Uj) - X + 1, where
A-B-D-H-J DC(Uj) is the design complexity of CSUj
A-C-G-IJ and X is the number of CSUs. :
A-B-E-H-J
@ A-C-F-I-) DC(CSC) =6-4 + 1 =3
Basis paths for testing can also be derived
E from the design complexity calculations in
the following paragraphs. /@

pd

2 z

s
ca
&

m| B e

51

TIT] PRs LanT B FNELART) SR\ Y SWE L R RS SRS ST\ SRV Sy A L ST WR 1Y

CSCl Design Complexity

The number of basis paths or subtrees that,
when taken in linear combination, will gen-
erate the entire set of subtrees for a CSCI. It
is equal to the sum of CSC design complex-
ities minus the number of CSCs plus one.

DC(CSCI) = DC(CSCj) -C + 1,
where

DC(CSC;j) is the design complexity of
CSCj and C is the number of CSCs.

WIS AIRO SO MOROB T AN BT R AT E T SN BN UM BT W W Y . v ----—-—rwww-‘.a

g

& S

e

.

e
=

=N &

3

